Wang, G. Nan, M. et al. | Liu | Recent progress of fuel-driven temporary materials | Authorea | 2023 | Materials |
Rajawasam, C. Tran, C. et al. | Hartley, Konkolewicz | Chemically Fueled Reinforcement of Polymer Materials | JACS | 2023 | Materials |
Kriebisch, B. Kriebisch, C. et al. | Boekhoven | Tuning the Kinetic Trapping in Chemically Fueled Self‐Assembly | ChemSystemsChem | 2023 | Materials |
Kriebisch, C. Burger, L. et al. | Boekhoven | Template-based information transfer in chemically fueled dynamic combinatorial librar-ies | Research Square | 2023 | Dynamic combinatorial library |
Chen, X. Würbser, M. et al. | Boekhoven | Chemically Fueled Supramolecular Materials | Accounts of Materials Research | 2023 | Materials |
Chen, X. Stasi, M. et al. | Boekhoven | A Carbodiimide-Fueled Reaction Cycle That Forms Transient 5 (4 H)-Oxazolones | JACS | 2023 | New reaction cycle |
Englert, A. Vogel, J. et al. | von Delius | A Ribonucleotide↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design | JACS | 2022 | New reaction cycle |
Xu, H. Bai, S. et al. | Wang | Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel | ACS Applied Materials & Interfaces | 2022 | Materials |
Zong, Z. Zhang, Q. et al. | Qu | Dynamic Timing Control of Molecular Photoluminescent Systems | Chemistry–A European Journal | 2022 | Materials |
Borsley, S. Leigh, D. et al. | Leigh | Tuning the force, speed, and efficiency of an autonomous chemically fueled information ratchet | JACS | 2022 | Ratchet, pumps, and motors |
Borsley, S. Leigh, D. et al. | Leigh | Chemical fuels for molecular machinery | Nature Chemistry | 2022 | Ratchet, pumps, and motors |
Borsley, S. Kreidt, E. et al. | Leigh | Autonomous fuelled directional rotation about a covalent single bond | Nature | 2022 | Ratchet, pumps, and motors |
Hossain, M. Jayalath, I. et al. | Hartley | Carbodiimide-Induced Formation of Transient Polyether Cages | ChemSystemsChem | 2022 | Cages |
Mondal, A. Toyoda, R. et al. | Feringa | Chemically driven rotatory molecular machines | Angewandte Chemie | 2022 | Ratchet, pumps, and motors |
Mo, K. Zhang, Y. et al. | Feringa | Intrinsically unidirectional chemically fuelled rotary molecular motors | Nature | 2022 | Ratchet, pumps, and motors |
Del Giudice, D. Spatola, E. et al. | Di Stefano | Dissipative Dynamic Libraries (DDLs) and Dissipative Dynamic Combinatorial Chemistry (DDCC) | ChemSystemsChem | 2022 | Dynamic combinatorial library |
Benny, R. Sahoo, D. et al. | De | Recent Advances in Fuel‐Driven Molecular Switches and Machines | ChemistryOpen | 2022 | Ratchet, pumps, and motors |
Donau, C. Boekhoven, J. et al. | Boekhoven | The chemistry of chemically fueled droplets | Trends in Chemistry | 2022 | Synthetic cells |
Stasi, M. Monferrer, A. et al. | Boekhoven | Regulating DNA-Hybridization Using a Chemically Fueled Reaction Cycle | JACS | 2022 | DNA nanotechnology |
Donau, C. Späth, F. et al. | Boekhoven | Phase Transitions in Chemically Fueled, Multiphase Complex Coacervate Droplets | Angewandte Chemie | 2022 | Synthetic cells |
Bergmann, A. Donau, C. et al. | Boekhoven | Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics | Angewandte Chemie | 2022 | Methods |
Schwarz, P. Tena-Solsona, M. et al. | Boekhoven | Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes | Chemical Comms. | 2022 | Materials |
Schnitter, F. Rieß, B. et al. | Boekhoven | Memory, switches, and an OR-port through bistability in chemically fueled crystals | Nature Comms. | 2022 | Materials |
Rodon-Fores, J. Würbser, M. et al. | Boekhoven | A chemically fueled supramolecular glue for self-healing gels | Chemical Science | 2022 | Materials |
Yao, Z. Kuang, Y. et al. | Ardoña | Carbodiimide-fueled assembly of π-conjugated peptides regulated by electrostatic interactions | ChemSystemsChem | 2022 | Materials |
Panja, S. Adams, D. et al. | Adams | Chemical crosslinking in ‘reactive’multicomponent gels | Chemical Comms. | 2022 | Materials |
Lang, X. Thumu, U. et al. | Zhao | Chemical fuel-driven transient polymeric micelle nanoreactors toward reversible trapping and reaction acceleration | Chemical Comms. | 2021 | Materials |
Heckel, J. Loescher, S. et al. | Walther | Chemically fueled volume phase transition of polyacid microgels | Angewandte Chemie | 2021 | Materials |
Heckel, J. Batti, F. et al. | Walther | Spinodal decomposition of chemically fueled polymer solutions | Soft Matter | 2021 | Materials |
Wang, Q. Qi, Z. et al. | Qu | Out‐of‐equilibrium supramolecular self‐assembling systems driven by chemical fuel | Aggregate | 2021 | Materials |
Niebuur, B. Hegels, H. et al. | Papdakis, Boekhoven | Droplet Formation by Chemically Fueled Self-Assembly: The Role of Precursor Hydrophobicity | J. Phys. Chem. B. | 2021 | Synthetic cells |
M. Ha , S. Nader, et al. | Michaelis, Boekhoven | Racing Towards Fast and Effective 17O Isotopic Labeling and NMR Spectroscopy of N-formyl-MLF-OH and Associated Building Blocks | J. Phys. Chem. B | 2021 | Methods |
Borsley, S. Leigh, D. et al. | Leigh | A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration | JACS | 2021 | Ratchet, pumps, and motors |
Dodo, O. Petit, L. et al. | Hartley, Konkolewicz | Tailoring lifetimes and properties of carbodiimide-fueled covalently cross-linked polymer networks | Macromolecules | 2021 | Materials |
Jayalath, I. Gerken, M. et al. | Hartley | Substituent effects on transient, carbodiimide-induced geometry changes in diphenic acids | J. Organic Chemistry | 2021 | Design rules |
Kariyawasam, L. Hossain, M. et al. | Hartley | The transient covalent bond in abiotic nonequilibrium systems | Angewandte Chemie | 2021 | Design rules |
Mondal, S. Haldar, D. et al. | Haldar | A transient non-covalent hydrogel by a supramolecular gelator with dynamic covalent bonds | New Journal of Chemistry | 2021 | Materials |
Schnitter, F. Boekhoven, J. et al. | Boekhoven | A method to quench carbodiimide‐fueled self‐assembly | ChemSystemsChem | 2021 | Methods |
Schnitter, F. Bergmann, A. et al. | Boekhoven | Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels | Nature Protocols | 2021 | Methods |
Würbser, M. Schwarz, P. et al. | Boekhoven | Chemically Fueled Block Copolymer Self‐Assembly into Transient Nanoreactors | ChemSystemsChem | 2021 | Materials |
Dai, K. Tena-Solsona, M. et al. | Boekhoven | Morphological transitions in chemically fueled self-assembly | Nanoscale | 2021 | Materials |
Schwarz, P. Tebcharani, L. et al. | Boekhoven | Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response | Chemical Science | 2021 | Materials |
Späth, F. Donau, C. et al. | Boekhoven | Molecular design of chemically fueled peptide–polyelectrolyte coacervate-based assemblies | JACS | 2021 | Materials |
Schwarz, P. Laha, S. et al. | Boekhoven | Parasitic behavior in competing chemically fueled reaction cycles | Chemical Science | 2021 | Materials |
Kriebisch, C. Bergmann, A. et al. | Boekhoven | Fuel-driven dynamic combinatorial libraries | JACS | 2021 | Dynamic combinatorial library |
Kretschmer, M. Winkeljann, B. et al. | Boekhoven | Viscoelastic behavior of chemically fueled supramolecular Materials under load and influence of reaction side products | Comms. Materials | 2021 | Materials |
Cheng, M. Qian, C. et al. | Wang | Writable and self-erasable hydrogel based on dissipative assembly process from multiple carboxyl tetraphenylethylene derivative | ACS Materials Letters | 2020 | Materials |
Wang, G. Liu, S. et al. | Liu | Strategies to construct a chemical‐fuel‐driven self‐assembly | ChemSystemsChem | 2020 | Design rules |
Jayalath, I. Wang, H. et al. | Hartley | Chemically fueled transient geometry changes in diphenic acids | Organic Letters | 2020 | Design rules |
Hossain, M. Atkinson, J. et al. | Hartley | Dissipative assembly of macrocycles comprising multiple transient bonds | Angewandte Chemie | 2020 | Materials |
Leng, Z. Peng, F. et al. | Hao | Chemical‐fuel‐driven assembly in macromolecular science: Recent advances and challenges | ChemPlusChem | 2020 | Materials |
Kriebisch, B. Jussupow, A. et al. | Boekhoven | Reciprocal coupling in chemically fueled assembly: a reaction cycle regulates self-assembly and vice versa | JACS | 2020 | Materials |
Dai, K. Fores, J. et al. | Boekhoven | Regulating chemically fueled peptide assemblies by molecular design | JACS | 2020 | Design rules |
Rieß, B. Grötsch, R. et al. | Boekhoven | The design of dissipative molecular assemblies driven by chemical reaction cycles | Chem | 2020 | Design rules |
Wanzke, C. Jussupow, A. et al. | Boekhoven | Dynamic vesicles formed by dissipative self‐assembly | ChemSystemsChem | 2020 | Materials |
Tena-Solsona, M. Janssen, J. et al. | Boekhoven | Kinetic Control over droplet ripening in fuel-driven active emulsions | ChemSystemsChem | 2020 | Synthetic cells |
Donau, C. Späth, F. et al. | Boekhoven | Active coacervate droplets as a model for membraneless organelles and a platform towards synthetic life | Nature Comms. | 2020 | Synthetic cells |
Panja, S. Dietrich, B. et al. | Adams | Chemically Fuelled Self‐Regulating Gel‐to‐Gel Transition | ChemSystemsChem | 2020 | Materials |
Zhang, B. Jayalath, I. et al. | Konkolewicz, Hartley | Chemically fueled covalent crosslinking of polymer materials | Chemical Comms. | 2019 | Materials |
Kariyawasam, L. Kron, J. et al. | Hartley | Structure–property effects in the generation of transient aqueous benzoic acid anhydrides by carbodiimide fuels | J. Organic Chemistry | 2019 | Design rules |
Bal, S. Das, K. et al. | Das | Chemically fueled dissipative self‐assembly that exploits cooperative catalysis | Angewandte Chemie | 2019 | Materials |
Grötsch, R. Wanzke, C. et al. | Boekhoven | Pathway dependence in the fuel-driven dissipative self-assembly of nanoparticles | JACS | 2019 | Materials |
Rieß, B. Wanzke, C. et al. | Boekhoven | Dissipative assemblies that inhibit their deactivation | Soft Matter | 2018 | Materials |
Rieß, B. Boekhoven, J. et al. | Boekhoven | Applications of dissipative supramolecular materials with a tunable lifetime | ChemNanoMat | 2018 | Materials |
Grötsch, R. Angı, A. et al. | Boekhoven | Dissipative Self‐Assembly of Photoluminescent Silicon Nanocrystals | Angewandte Chemie | 2018 | Materials |
Tena-Solsona, M. Wanzke, C. et al. | Boekhoven | Self-selection of dissipative assemblies driven by primitive chemical reaction networks | Nature Comms. | 2018 | Dynamic combinatorial library |
Grötsch, R. Boekhoven, J. et al. | Boekhoven | Unique properties of supramolecular biomaterials through nonequilibrium self-assembly | Self-assembling Biomaterials | 2018 | Materials |
Kariyawasam, L. Hartley, C. S. et al. | Hartley | Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides | JACS | 2017 | Materials |
Tena-Solsona, M. Rieß, B. et al. | Boekhoven | Non-equilibrium dissipative supramolecular materials with a tunable lifetime | Nature Comms. | 2017 | Materials |